亚洲精品亚洲人成在线观看麻豆,在线欧美视频一区,亚洲国产精品一区二区动图,色综合久久丁香婷婷

              當(dāng)前位置:首頁 > 百科知識 > 電子工程 > 正文

              CMOS傳感器

              CMOS(Complementary Metal-Oxide-Semiconductor),中文學(xué)名為互補金屬氧化物半導(dǎo)體,它本是計算機系統(tǒng)內(nèi)一種重要的芯片,保存了系統(tǒng)引導(dǎo)最基本的資料。

              1、介紹

              當(dāng)今的CMOS圖像轉(zhuǎn)換技術(shù)不僅服務(wù)于“傳統(tǒng)的”工業(yè)圖像處理,而且還憑借其卓越的性能和靈活性而被日益廣泛的新穎消費應(yīng)用所接納。此外,它還能確保汽車駕駛時的高安全性和舒適性。最初,CMOS圖像傳感器被應(yīng)用于工業(yè)圖像處理;在那些旨在提高生產(chǎn)率、質(zhì)量和生產(chǎn)工藝經(jīng)濟性的全新自動化解決方案中,它至今仍然是至關(guān)重要的一環(huán)。
              據(jù)市場研究公司IMS Research的預(yù)測,在未來的幾年中,歐洲工業(yè)圖像處理市場的年成長率將達(dá)到6%,其中,在相機中集成了軟件功能的智能型解決方案的市場份額將不斷擴大。在德國,據(jù)其全國工具機供應(yīng)商協(xié)會VDMA提供的數(shù)據(jù),2004年的圖像處理市場增長率達(dá)到了14%。市場調(diào)研公司In-Stat/MDR亦指出,單就圖像傳感器的次級市場而言,其年成長率將高達(dá)30%以上,而且這種情況將持續(xù)到2008年。最為重要的是:CMOS傳感器的成長速度將達(dá)到CCD傳感器的七倍,照相手機和數(shù)碼相機的迅速普及是這種需求的主要推動因素。
              顯然,人們?nèi)绱丝春肅MOS圖像轉(zhuǎn)換器的成長前景是基于這樣一個事實,即:與壟斷該領(lǐng)域長達(dá)30多年的CCD技術(shù)相比,它能夠更好地滿足用戶對各種應(yīng)用中新型圖像傳感器不斷提升的品質(zhì)要求,如更加靈活的圖像捕獲、更高的靈敏度、更寬的動態(tài)范圍、更高的分辨率、更低的功耗以及更加優(yōu)良的系統(tǒng)集成等。此外,CMOS圖像轉(zhuǎn)換器還造就了一些迄今為止尚不能以經(jīng)濟的方式來實現(xiàn)的新穎應(yīng)用。另外,還有一些有利于CMOS傳感器的“軟”標(biāo)準(zhǔn)在起作用,包括:應(yīng)用支持、抗輻射性、快門類型、開窗口和光譜覆蓋率等。不過,這種區(qū)別稍帶幾分任意性,因為這些標(biāo)準(zhǔn)的重要程度將由于應(yīng)用的不同(消費、工業(yè)或汽車)而發(fā)生變化。[1] 
              ist">

              2、難題

              就像我們從模擬攝影所獲知的那樣,拍攝一幅完整場景的照片是一件相當(dāng)普通的事情,照相手機同樣如此。但是,對于工業(yè)或汽車應(yīng)用來說,情況就大不一樣了:有些場合并不需要很高的全幀數(shù)據(jù)速率。比如,在監(jiān)控攝像機中,只要能夠發(fā)現(xiàn)一幅場景中出現(xiàn)的變化(因為這種變化可能預(yù)示著某種可疑情況),那么分辨率低一點也是完全可以接受的。在此基礎(chǔ)之上才需要借助全分辨率來采集更多的細(xì)節(jié)信息。跟著發(fā)生的動作將只在攝像機視場的某一部分當(dāng)中進(jìn)行播放,而且,在所捕獲的場景中,只有這一部分才是監(jiān)控人員所關(guān)注的。
              對于只提供全幀圖像的CCD圖像傳感器而言,只有采用一個分離的評估電路才能夠提供兩個觀測角度,這意味著處理時間和成本的增加。然而,CMOS圖像傳感器的工作原理則與RAM相似,所有的存儲位均可單獨讀出。CMOS傳感器的二次采樣雖然提供了較低的分辨率,但是幀速率較高;而開窗口則允許隨機選擇一塊感興趣的區(qū)域。

              3、優(yōu)勢

              最新CMOS傳感器獲得廣泛應(yīng)用的一個前提是其所擁有的較高靈敏度、較短曝光時間和日漸縮小的像素尺寸。像素靈敏度的一個衡量尺度是填充因子(感光面積與整個像素面積之比)與量子效率(由轟擊屏幕的光子所生成的電子的數(shù)量)的乘積。CCD傳感器因其技術(shù)的固有特性而擁有一個很大的填充因子。而在CMOS圖像傳感器中,為了實現(xiàn)堪與CCD轉(zhuǎn)換器相媲美的噪聲指標(biāo)和靈敏度水平,人們給CMOS圖像傳感器裝配上了有源像素傳感器(APS),并且導(dǎo)致填充因子降低,原因是像素表面相當(dāng)大的一部分面積被放大器晶體管所占用,留給光電二極管的可用空間較小。所以,當(dāng)今CMOS傳感器的一個重要的開發(fā)目標(biāo)就是擴大填充因子。賽普拉斯(FillFactory)通過其獲得專利授權(quán)的一項技術(shù),可以大幅度地提高填充因子,這種技術(shù)可以把一顆標(biāo)準(zhǔn)CMOS硅芯片最大的一部分面積變?yōu)橐粔K感光區(qū)域。隨著像素尺寸的變小,提高填充因子所來越困難,目前最流行的技術(shù)是從傳統(tǒng)的前感光式(FSI,F(xiàn)ront Side Illumination)變?yōu)楸巢扛泄馐剑˙SI,Back Side Illumination),放大器等晶體管以及互聯(lián)電路置于背部,前部全部留給光電二極管,這樣就實現(xiàn)了100%的填充因子(如右側(cè)示意圖所示)。
              另外,對于一個典型的工業(yè)用圖象傳感器而言,由于許多場景的拍攝都是在照明條件很差的情況下進(jìn)行的,因此擁有較大的動態(tài)范圍將是十分有益的。CMOS圖像傳感器通過多斜率操作實現(xiàn)了這一目標(biāo):轉(zhuǎn)換曲線由傾度不同的直線部分所組成,它們共同形成了一個非線性特征曲線。因此,一幅場景的黑暗部分有可能占據(jù)集成模擬-數(shù)字轉(zhuǎn)換器轉(zhuǎn)換范圍的很大一部分:轉(zhuǎn)換特征曲線在這里最為陡峭,以實現(xiàn)高靈敏度和對比度。特征曲線上半部分的平整化將在圖像的明亮部分捕獲幾個數(shù)量級的過度曝光,并以一個更加細(xì)致的標(biāo)度來表現(xiàn)它們。采用多斜率的方式來運作LUPA-4000將使高達(dá)90dB的光動態(tài)范圍與一個10位A/D轉(zhuǎn)換范圍相匹配。
              具有VGA分辨率的IM-001系列CMOS圖像傳感器在此基礎(chǔ)上更進(jìn)一步;它們是專為汽車應(yīng)用而設(shè)計的。其像素由光電二極管組成,可提供高達(dá)120dB的自適應(yīng)動態(tài)范圍。面向汽車應(yīng)用的ACM 100相機模塊就采用了這些傳感器,這種相機模塊據(jù)稱是同類產(chǎn)品中率先面市的全集成化相機解決方案:該視覺解決方案被看作是面向駕駛者保護(hù)、防撞、夜視支持和輪胎跟蹤導(dǎo)向的未來汽車安全系統(tǒng)的關(guān)鍵元件。
              此外,對于獨立于電網(wǎng)的便攜式應(yīng)用而言,以低功耗特性而著稱的CMOS技術(shù)還具有一個明顯的優(yōu)勢:CMOS圖像傳感器是針對5V和3.3V電源電壓而設(shè)計的。而CCD芯片則需要大約12V的電源電壓,因此不得不采用一個電壓轉(zhuǎn)換器,從而導(dǎo)致功耗增加。在總功耗方面,把控制和系統(tǒng)功能集成到CMOS傳感器中將帶來另一個好處:它去除了與其他半導(dǎo)體元件的所有外部連接線。其高功耗的驅(qū)動器如今已遭棄用,這是因為在芯片內(nèi)部進(jìn)行通信所消耗的能量要比通過PCB或襯底的外部實現(xiàn)方式低得多。

              4、光譜靈敏

              在現(xiàn)代CMOS圖像傳感器中,一個重要的發(fā)展趨勢是其光譜靈敏度擴展到了近紅外區(qū)NIR(至約1,100nm的波長)。配備了IM-001 CMOS圖像傳感器的汽車應(yīng)用將改善霧穿透力和夜視能力。由于工業(yè)圖像捕獲技術(shù)開始運用更多波長位于NIR之中的光源,而且生物技術(shù)也在利用該光譜區(qū)域中的有趣現(xiàn)象,因此,新開發(fā)的IBIS 5-AE-1300傳感器具有700~900nm的NIR靈敏度。
              在面向消費應(yīng)用的圖像捕獲技術(shù)中,另一個發(fā)展趨勢是繼續(xù)提高分辨率。到2005年年中,70%左右的手機相機已具有VGA格式分辨率(640×480像素);但隨后的2006年,幾百萬像素的傳感器就將占領(lǐng)50%的市場份額,而到2008年,其市場占有率預(yù)計將進(jìn)一步攀升至90%以上。為此,賽普拉斯公司開發(fā)了一種用于蜂窩電話的300萬像素圖像傳感器,該產(chǎn)品采用了Autobrite技術(shù),可進(jìn)行12位模擬/數(shù)字轉(zhuǎn)換,并提供了72dB的寬廣動態(tài)范圍,而目前市面上的10位模擬/數(shù)字轉(zhuǎn)換器的動態(tài)范圍僅為60dB。逐行掃描模式中的幀速率高達(dá)30幀/秒,因而可錄制實況視頻節(jié)目。
              在工業(yè)和商業(yè)領(lǐng)域中,這種發(fā)展趨勢也很明顯:賽普拉斯已推出一款用于Kodak數(shù)碼相機的1,300萬像素/35mm圖像傳感器,另外,660萬像素的IBIS 4-6600傳感器正在一種面向弱視人群的自動閱讀輔助裝置中證明自己的卓越品質(zhì)--它可在一幅完整的標(biāo)準(zhǔn)A4頁面上提供出色的分辨率。
              憑借技術(shù)實現(xiàn)系統(tǒng)集成 由于蜂窩電話、數(shù)碼相機、MP3播放機和PDA等傳統(tǒng)分離型功能設(shè)備的加速數(shù)字融合(即成為一部緊湊的消費型電子產(chǎn)品),導(dǎo)致人們越來越希望至少具有部分自主性的子系統(tǒng)能夠在一部設(shè)備中提供極為寬泛的功能。這種趨勢還將對專業(yè)測量技術(shù)產(chǎn)生影響:利用包含一個數(shù)碼相機、PDA用戶接口和WLAN聯(lián)網(wǎng)能力的便攜式檢驗工具,光測試和監(jiān)視的應(yīng)用范圍將得到有效的拓展。作為一種平臺技術(shù),CMOS符合這一發(fā)展潮流:CCD圖像轉(zhuǎn)換器仍然需要采用外部邏輯電路來實現(xiàn)控制和模擬/數(shù)字轉(zhuǎn)換功能,而CMOS標(biāo)準(zhǔn)邏輯器件則能夠把傳感器、控制器、轉(zhuǎn)換器和評估邏輯電路等全部集成到一塊芯片之中。
              一個典型的例子如專門針對要求苛刻的消費應(yīng)用而制作的CYIWCSC1300AA芯片的圖像捕獲電路。它基于130萬像素圖像傳感器CYIWOSC1300AA 和一個用于提供誤差插補、黑電平調(diào)整、透鏡校正、信號互串校正、彩色馬賽克修補、彩色校正、自動曝光、噪聲抑制、特效和γ校正等等諸多功能的附加信號處理器。集成更多的系統(tǒng)功能(一直到自主型光電傳感器系統(tǒng))是可行的,這主要取決于諸如市場容量和開發(fā)成本等經(jīng)濟目標(biāo)和限制因素。
              IMS Research公司的資深市場分析家John Morse指出:“工業(yè)圖像處理市場的變化非???,不光是在技術(shù)層面上,而且還涉及近期發(fā)生的制造商合并事件。我們認(rèn)為這種趨勢還將繼續(xù)下去。”果真如此,那么這同樣適用于賽普拉斯公司:通過收購MIT(美國麻省理工學(xué)院)于1999年成立的SMal Camera Technologies公司,賽普拉斯已將其業(yè)務(wù)觸角延伸到了消費和汽車領(lǐng)域;而兼并FillFactory(這是一家于1999年從總部位于比利時Leuven的著名歐洲微電子和納米技術(shù)研究中心IMEC抽資脫離而成的公司)則使賽普拉斯進(jìn)一步躋身工業(yè)領(lǐng)域。
              CMOS圖像傳感器市場正在蓬勃發(fā)展之中,即將成為一個大規(guī)模市場。它在很大程度上仍然依賴于客戶專用設(shè)計來滿足規(guī)格和系統(tǒng)集成方面的一組定制要求。不過,它將越來越多地提供通用的標(biāo)準(zhǔn)解決方案。分辨率、幀速率和靈敏度的提高以及成本的下降正使其應(yīng)用領(lǐng)域不斷地擴大。要的一環(huán)。

              5、像素結(jié)構(gòu)

              CMOS傳感器按為像素結(jié)構(gòu)分被動式與主動式兩種。

              被動式

              被動式像素結(jié)構(gòu)(Passive Pixel Sensor.簡稱PPS),又叫無源式。它由一個反向偏置的光敏二極管和一個開關(guān)管構(gòu)成。光敏二極管本質(zhì)上是一個由P型半導(dǎo)體和N型半導(dǎo)體組成的PN結(jié),它可等效為一個反向偏置的二極管和一個MOS電容并聯(lián)。當(dāng)開關(guān)管開啟時,光敏二極管與垂直的列線(Column bus)連通。位于列線末端的電荷積分放大器讀出電路(Charge integrating amplifier)保持列線電壓為一常數(shù),當(dāng)光敏二極管存貯的信號電荷被讀出時,其電壓被復(fù)位到列線電壓水平,與此同時,與光信號成正比的電荷由電荷積分放大器轉(zhuǎn)換為電荷輸出。

              主動式

              主動式像素結(jié)構(gòu)(Active Pixel Sensor.簡稱APS),又叫有源式,如圖2所示. 幾乎在CMOS PPS像素結(jié)構(gòu)發(fā)明的同時,人們很快認(rèn)識到在像素內(nèi)引入緩沖器或放大器可以改善像素的性能,在CMOS APS中每一像素內(nèi)都有自己的放大器。集成在表面的放大晶體管減少了像素元件的有效表面積,降低了“封裝密度”,使40%~50%的入射光被反射。這種傳感器的另一個問題是,如何使傳感器的多通道放大器之間有較好的匹配,這可以通過降低殘余水平的固定圖形噪聲較好地實現(xiàn)。由于CMOS APS像素內(nèi)的每個放大器僅在此讀出期間被激發(fā),所以CMOS APS的功耗比CCD圖像傳感器的還小。

              填充因數(shù)

              這填充因數(shù)(Fill Factor),又叫充滿因數(shù),它指像素上的光電二極管相對于像素表面的大小。量子效率(Quantun efficiency)是指一個像素被光子撞擊后實際和理論最大值電子數(shù)的歸一化值.被動式像素結(jié)構(gòu)的電荷填充因數(shù)通??蛇_(dá)到70%,因此量子效率高。但光電二極管積累的電荷通常很小,很易受到雜波干擾。再說像素內(nèi)部又沒有信號放大器,只依賴垂直總線終端放大器,因而讀出的信號雜波很大,其S/N比低,更因不同位置的像素雜波大小不一樣(固定圖形噪波FPN)而影響整個圖像的質(zhì)量。而主動性像素結(jié)構(gòu)與被動式相比,它在每個像素處增加了一個放大器,可以將光電二極管積累的電荷轉(zhuǎn)換成電壓進(jìn)行放大,大大提高了S/N比,從而提高了傳輸過程中抗干擾的能力。但由于放大器占據(jù)了過多的像素面積,因而它的填充因數(shù)相對較低,一般在25%-35%之間。

              6、影響因素

              1、噪聲

              這是影響CMOS傳感器性能的首要問題。這種噪聲包括固定圖形噪聲FPN(Fixed pattern noise)、暗電流噪聲、熱噪聲等。固定圖形噪聲產(chǎn)生的原因是一束同樣的光照射到兩個不同的象素上產(chǎn)生的輸出信號不完全相同。噪聲正是這樣被引入的。對付固定圖形噪聲可以應(yīng)用雙采樣或相關(guān)雙采樣技術(shù)。具體地說來有點像在設(shè)計模擬放大器時引入差分對來抑制共模噪聲。雙采樣是先讀出光照產(chǎn)生的電荷積分信號,暫存然后對象素單元進(jìn)行復(fù)位,再讀取此象素單元地輸出信號。兩者相減得出圖像信號。兩種采樣均能有效抑制固定圖形噪聲。另外,相關(guān)雙采樣需要臨時存儲單元,隨著象素地增加,存儲單元也要增加。

              2、暗電流

              物理器件不可能是理想的,如同亞閾值效應(yīng)一樣,由于雜質(zhì)、受熱等其他原因的影響,即使沒有光照射到象素,象素單元也會產(chǎn)生電荷,這些電荷產(chǎn)生了暗電流。暗電流與光照產(chǎn)生的電荷很難進(jìn)行區(qū)分。暗電流在像素陣列各處也不完全相同,它會導(dǎo)致固定圖形噪聲。對于含有積分功能的像素單元來說,暗電流所造成的固定圖形噪聲與積分時間成正比。暗電流的產(chǎn)生也是一個隨機過程,它是散彈噪聲的一個來源。因此,熱噪聲元件所產(chǎn)生的暗電流大小等于像素單元中的暗電流電子數(shù)的平方根。當(dāng)長時間的積分單元被采用時,這種類型的噪聲就變成了影響圖像信號質(zhì)量的主要因素,對于昏暗物體,長時間的積分是必要的,并且像素單元電容容量是有限的,于是暗電流電子的積累限制了積分的最長時間。
              為減少暗電流對圖像信號的影響,首先可以采取降溫手段。但是,僅對芯片降溫是遠(yuǎn)遠(yuǎn)不夠的,由暗電流產(chǎn)生的固定圖形噪聲不能完全通過雙采樣克服?,F(xiàn)在采用的有效的方法是從已獲得的圖像信號中減去參考暗電流信號。

              3、象素的飽和與溢出模糊

              類似于放大器由于線性區(qū)的范圍有限而存在一個輸入上限,對于CMOS圖像傳感芯片來說,它也有一個輸入的上限。輸入光信號若超過此上限,像素單元將飽和而不能進(jìn)行光電轉(zhuǎn)換。對于含有積分功能的像素單元來說,此上限由光電子積分單元的容量大小決定:對于不含積分功能的像素單元,該上限由流過光電二極管或三極管的最大電流決定。在輸入光信號飽和時,溢出模糊就發(fā)生了。溢出模糊是由于像素單元的光電子飽和進(jìn)而流出到鄰近的像素單元上。溢出模糊反映到圖像上就是一片特別亮的區(qū)域。這有些類似于照片上的曝光過度。溢出模糊可通過在像素單元內(nèi)加入自動泄放管來克服,泄放管可以有效地將過剩電荷排出。但是,這只是限制了溢出,卻不能使象素能真實還原出圖像了。

              7、區(qū)別

              CCD與CMOS傳感器是被普遍采用的兩種圖像傳感器,兩者都是利用感光二極管(photodiode)進(jìn)行光電轉(zhuǎn)換,將圖像轉(zhuǎn)換為數(shù)字?jǐn)?shù)據(jù),而其主要差異是數(shù)字?jǐn)?shù)據(jù)傳送的方式不同。
              CCD傳感器中每一行中每一個象素的電荷數(shù)據(jù)都會依次傳送到下一個象素中,由最底端部分輸出,再經(jīng)由傳感器邊緣的放大器進(jìn)行放大輸出;而在CMOS傳感器中,每個象素都會鄰接一個放大器及A/D轉(zhuǎn)換電路,用類似內(nèi)存電路的方式將數(shù)據(jù)輸出。
              造成這種差異的原因在于:CCD的特殊工藝可保證數(shù)據(jù)在傳送時不會失真,因此各個象素的數(shù)據(jù)可匯聚至邊緣再進(jìn)行放大處理;而CMOS工藝的數(shù)據(jù)在傳送距離較長時會產(chǎn)生噪聲,因此,必須先放大,再整合各個象素的數(shù)據(jù)[3] 。
              由于數(shù)據(jù)傳送方式不同,因此CCD與CMOS傳感器在效能與應(yīng)用上也有諸多差異,這些差異包括:

              靈敏度

              由于CMOS傳感器的每個象素由四個晶體管與一個感光二極管構(gòu)成(含放大器與A/D轉(zhuǎn)換電路),使得每個象素的感光區(qū)域遠(yuǎn)小于象素本身的表面積,因此在象素尺寸相同的情況下,CMOS傳感器的靈敏度要低于CCD傳感器。[3] 

              成本

              由于CMOS傳感器采用一般半導(dǎo)體電路最常用的CMOS工藝,可以輕易地將周邊電路(如AGC、CDS、Timing generator、或DSP等)集成到傳感器芯片中,因此可以節(jié)省外圍芯片的成本;除此之外,由于CCD采用電荷傳遞的方式傳送數(shù)據(jù),只要其中有一個象素不能運行,就會導(dǎo)致一整排的數(shù)據(jù)不能傳送,因此控制CCD傳感器的成品率比CMOS傳感器困難許多,即使有經(jīng)驗的廠商也很難在產(chǎn)品問世的半年內(nèi)突破50%的水平,因此,CCD傳感器的成本會高于CMOS傳感器。[3] 

              分辨率

              CMOS傳感器的每個象素都比CCD傳感器復(fù)雜,其象素尺寸很難達(dá)到CCD傳感器的水平,因此,當(dāng)比較相同尺寸的CCD與CMOS傳感器時,CCD傳感器的分辨率通常會優(yōu)于CMOS傳感器的水平。例如,市面上CMOS傳感器最高可達(dá)到210萬象素的水平(OmniVision的 OV2610,2002年6月推出),其尺寸為1/2英寸,象素尺寸為4.25μm,但Sony在2002年12月推出了ICX452,其尺寸與 OV2610相差不多(1/1.8英寸),但分辨率卻能高達(dá)513萬象素,象素尺寸也只有2.78μm的水平。[3] 

              噪聲

              由于CMOS傳感器的每個感光二極管都需搭配一個放大器,而放大器屬于模擬電路,很難讓每個放大器所得到的結(jié)果保持一致,因此與只有一個放大器放在芯片邊緣的CCD傳感器相比,CMOS傳感器的噪聲就會增加很多,影響圖像品質(zhì)。[3] 

              功耗

              CMOS傳感器的圖像采集方式為主動式,感光二極管所產(chǎn)生的電荷會直接由晶體管放大輸出,但CCD傳感器為被動式采集,需外加電壓讓每個象素中的電荷移動,而此外加電壓通常需要達(dá)到12~18V;因此,CCD傳感器除了在電源管理電路設(shè)計上的難度更高之外(需外加 power IC),高驅(qū)動電壓更使其功耗遠(yuǎn)高于CMOS傳感器的水平。舉例來說,OmniVision推出的OV7640(1/4英寸、VGA),在 30 fps的速度下運行,功耗僅為40mW;而致力于低功耗CCD傳感器的Sanyo公司推出的1/7英寸、CIF等級的產(chǎn)品,其功耗卻仍保持在90mW 以上。因此CCD發(fā)熱量比CMOS大,不能長時間在陽光下工作。
              綜上所述,CCD傳感器在靈敏度、分辨率、噪聲控制等方面都優(yōu)于CMOS傳感器,而CMOS傳感器則具有低成本、低功耗、以及高整合度的特點。不過,隨著CCD與CMOS傳感器技術(shù)的進(jìn)步,兩者的差異有逐漸縮小的態(tài)勢,例如,CCD傳感器一直在功耗上作改進(jìn),以應(yīng)用于移動通信市場(這方面的代表業(yè)者為Sanyo);CMOS傳感器則在改善分辨率與靈敏度方面的不足,以應(yīng)用于更高端的圖像產(chǎn)品。

              8、廠商

              投入CMOS研發(fā)、生產(chǎn)的廠商較多,美國有30多家,歐洲7家,日本約8家,韓國1家,臺灣有8家。而居全球翹楚地位的廠商是Agilent(HP),其市場占有率51%、ST(VLSI Vision)占16%、Omni Vision占13%、現(xiàn)代占8%、Photobit約占5%,這五家合計市占率達(dá)93%。

              Sony

              Sony是全球CCD傳感器第一大廠,也是第一家投入12英寸晶圓、推出600萬象素CCD的公司,Sony約有30~40%的CCD傳感器供自有品牌產(chǎn)品使用,其它則賣給Canon、Sanyo、Casio、以及臺灣的新虹、普利爾、詮訊(與臺灣佳能合并)等廠商。
              Sony的產(chǎn)品技術(shù)藍(lán)圖顯示,2003年除了800萬象素的ICX 456外,并無其它微縮工藝的產(chǎn)品問世。產(chǎn)品尺寸將大致保持現(xiàn)有水平,取而代之的是強化攝影功能與支持progressive scan(連續(xù)式掃描),例如500萬象素的ICX455/465、330萬象素的ICX451/481、以及210萬象素的ICX461等,令高端產(chǎn)品也能達(dá)到30fps以上的數(shù)據(jù)傳送速率。
              高端產(chǎn)品的大部分市場仍被Sony占據(jù),再加上市場仍處于供不應(yīng)求的局面,公司并未急于做降低成本的動作,不過,一旦Sony最先進(jìn)的工藝(象素尺寸2.6~2.8mm)達(dá)到成熟階段(成品率超過50%),該公司勢必近一步將此工藝應(yīng)用到其它產(chǎn)品上(目前仍只有1/1.8英寸、 500萬象素產(chǎn)品使用此工藝),屆時可能會有1/2.7英寸、400萬象素產(chǎn)品問世。

              OmniVision

              OmniVision成立于1995年(以下簡稱OV),2002年6月領(lǐng)先其它同業(yè)率先推出210萬象素的OV2610震驚市場,雖然目前采用此傳感器量產(chǎn)的產(chǎn)品并不多,但這已說明CMOS傳感器可以開始進(jìn)入原本屬于CCD傳感器的中高端數(shù)碼相機市場; OV的數(shù)據(jù)顯示,目前已有天瀚、明、鴻友等臺灣商家開始采用該公司的OV2610。展望2003年,OV將在1季度~2季度之間推出330萬象素、1/2英寸的產(chǎn)品,采TSMC 0.18mm工藝生產(chǎn),再次拓展CMOS傳感器的應(yīng)用范圍。在移動電話市場上,CMOS模組的攝相模塊已經(jīng)成為移動通訊應(yīng)用的最大量產(chǎn)品。
              在低功耗產(chǎn)品方面,OV也在2002年12巒瞥雋薕V7640,可以在2.5V的環(huán)境下運行,為目前VGA產(chǎn)品中功耗最低的芯片。而在2003 年新規(guī)劃的產(chǎn)品方面,OV計劃在下半年推出130萬象素、1/4英寸,以及VGA、1/7英寸的產(chǎn)品,希望在CCD廠家推出低功耗的130萬素產(chǎn)品之前,先行搶占市場先機。

              Agilent

              Agilent主要的產(chǎn)品為第二代的CIF(352*288)HDCS-1020和第二代的VGA(640*480)HDCS-2020,主要應(yīng)用在數(shù)碼相機 、行動電話、PDA、PC Camera等新興的資訊家電產(chǎn)品之中,此外Agilent在2000年另一成功策略是和Logitech與Microsoft這兩家公司策略聯(lián)盟,打入了光學(xué)鼠標(biāo)產(chǎn)品領(lǐng)域,但是這是非常低階的CMOS產(chǎn)品,而且不是為了捕捉影像 ,所以在做影像感測器的全球統(tǒng)計時并未將此數(shù)量一并加入,但是此舉可看出Agilent以CMOS技術(shù)為基礎(chǔ)進(jìn)軍光學(xué)元件的規(guī)劃意圖。

              Aptina

              Photobit在2000年獲得較大成功。2001年P(guān)hotobit率先研發(fā)出PB-0330產(chǎn)品型號的CMOS圖像傳感器,此產(chǎn)品特色具備單一晶片邏輯轉(zhuǎn)數(shù)位的變頻器,它是第二代1/4寸的VGA(640 x 480),同時也推出PB-0111產(chǎn)品型號的CMOS影像感測器,是第二代1/5寸的CIF(352 x 288)。Photobit推出這兩種產(chǎn)品主要針對數(shù)碼相機和PC Camera這些近年來蓬勃發(fā)展的數(shù)位化產(chǎn)品,和OmniVision CIF(352 x 288)定位在行動電話市場上有所區(qū)隔,其推出CIF(352 x 288)和VGA(640 x 480)這兩種不同解析程度的影像感測器,行銷范圍意圖含蓋低階和中高階市場。Photobit 后來被Micron(美光)收購。之后,Micron把圖像傳感器部門獨立出來,成立了現(xiàn)在的Aptina。

              panavision

              高品質(zhì)工業(yè)CMOS圖像傳感器,主要產(chǎn)品DYNAMAX-11。這顆新的傳感器含有的全局電子曝光快門技術(shù),極大地改善了工業(yè)成像在室內(nèi)和室外的應(yīng)用。這顆新發(fā)布的DYNAMAX-11圖像傳感器適合用于機器視覺、安防監(jiān)控、智能交通、生命科學(xué)、生物醫(yī)療、科學(xué)影像、高清錄像、電視廣播等工業(yè)成像領(lǐng)域。這顆新發(fā)布的DYNAMAX-11圖像傳感器含有320萬像素,像素大小為5.0µm × 5.0µm。

              其它公司

              最具特色的是Sanyo,該公司致力于改善CCD 傳感器的功耗,以相機電話為主要應(yīng)用目標(biāo),之前J-Phone率先推出的Sharp J-SHxx系列便是采用Sanyo的CIF級CCD傳感器,Sharp、Toshiba等手機廠家也計劃在02年4季度~03年1季度之間陸續(xù)引入 Sanyo的VGA產(chǎn)品。Matsushita、Sharp的產(chǎn)品規(guī)劃與Sony相差不多,主要差異在于Matsushita準(zhǔn)備推出更小的400萬象素 (1/2.7英寸)與130萬象素(1/4英寸)產(chǎn)品。

              9、發(fā)展前景

              專家們認(rèn)為,21世紀(jì)初全球CMOS圖像傳感器市場將在PC攝像機、移動通信市場、數(shù)碼相機、攝像機市場市場等領(lǐng)域獲得大幅度增長,在未來的幾年時間內(nèi),在130 萬像素至200萬像素之下的產(chǎn)品中,將開始以CMOS傳感器為主流。以小型化和低功耗CMOS圖像傳感器為核心的攝像機正在成為消費類產(chǎn)品的主流,上述領(lǐng)域?qū)閳D像傳感器市場帶來巨大發(fā)展 。

              10、業(yè)界動態(tài)

              2009年8月28日,索尼秋季數(shù)碼影像新品發(fā)布會在北京隆重舉行,索尼宣布在三條產(chǎn)品線推出共十款數(shù)碼影像新品。其中 DSC-TX1和DSC-WX1首次應(yīng)用了新型影像傳感器Exmor R CMOS影像傳感器,它采用先進(jìn)的背照射技術(shù),其對光線的靈敏度比傳統(tǒng)的CMOS影像傳感器提高了約2倍,大幅提升了拍攝畫質(zhì),得到明亮畫面的同時更好地降噪,使得在低照度條件下仍然可以獲得細(xì)節(jié)豐富的照片,造就卓越的夜間拍攝性能。該傳感器具備1020萬有效像素,支持從ISO100~ISO3200的感光度范圍,并支持720p的高畫質(zhì)動態(tài)影像視頻拍攝。性能強大的Exmor R MOS配合BIONZ影像處理器,可以快速準(zhǔn)確地處理海量信息,使DSC TX1和WX1具備了手持夜景模式、全景拍攝、動作防抖和每秒最高約10張。
              三星電子公司提高CMOS傳感器靈敏度的背面照射(BSI:backside illumination)技術(shù)達(dá)到了實用化水平,2010年將批量生產(chǎn)產(chǎn)品。三家大型CMOS傳感器公司均將在2010年開始量產(chǎn)采用背面照射技術(shù)的 CMOS傳感器(BSI型CMOS傳感器)。三星在工藝技術(shù)方面將采用適于降低成本的方法。之所以著手從事BSI技術(shù),是因為通過提高靈敏度能夠維持相同的靈敏度同時縮小像素間距。據(jù)該公司估算,1.4μm間距的BSI型能夠獲得與基于現(xiàn)有技術(shù)的FSI(Front Side Illumination)型1.75μm間距產(chǎn)品相同的畫質(zhì)。同一像素間距,BSI型的靈敏度可以比FIS型高30%。三星為在今后量產(chǎn)1.1μm間距產(chǎn)品等間距更小的元件,將增加BSI型的比例。該公司計劃把2010年首批量產(chǎn)的BSI型CMOS傳感器做成支持1460萬像素和30幀/秒的元件。預(yù)計將配備于數(shù)碼相機、數(shù)碼攝像機及高端手機等設(shè)備上。

              11、發(fā)展趨勢

              傳感器架構(gòu)可由兩分式、四分式或一個像素陣列組成。輸出可為并行模擬輸出,或一個10位數(shù)字輸出或數(shù)字串行LVDS輸出。每個輸出可高達(dá)每秒5,000萬次的采樣速度,這樣就能實現(xiàn)每秒55億像素的吞吐量。迄今為止,該圖像傳感器是具有最高連續(xù)像素吞吐量的一款。圖像質(zhì)量至少達(dá)到10位精度,因此攝像頭數(shù)字化之后,數(shù)據(jù)吞吐量可為每秒55Gbit。這樣高速的應(yīng)用通常需要6個電晶體快照像素,且需要較高的靈敏度和動態(tài)范圍。圖像傳感器的靈敏度很大程度上取決于像素尺寸,而大的像素尺寸就需要大面積特定應(yīng)用的定制圖像傳感器。內(nèi)部多路復(fù)用技術(shù)可支持更高幀速率的隨機窗口。如果將窗口大小縮至較小的ROI(圈選目標(biāo)區(qū)域),那么最快速度器件的幀速率可達(dá)每秒170,000幀。大多數(shù)傳感器都采用0.25工藝。
              目前,CMOS是高速成像所青睞的技術(shù)。在當(dāng)前市場中,我們可以發(fā)現(xiàn)高速圖像傳感器有三大發(fā)展趨勢,一是向極高速方向發(fā)展,二是向片上特性集成方向發(fā)展,三是向通用高速圖像傳感器方向發(fā)展。
              分辨率和幀速率相結(jié)合,發(fā)揮著重要的作用。目前,我們可以推出1024×1024像素的圖像傳感器,工作速度達(dá)到每秒5,000個全幀。如果模數(shù)轉(zhuǎn)換為10位的話,那么這就是說攝像頭上的總數(shù)據(jù)速率可達(dá)每秒55Gbit。為了實現(xiàn)傳感器上極高的數(shù)據(jù)速率和高圖像質(zhì)量,尤其是對這種高敏感度的應(yīng)用而言,我們不僅要設(shè)計出正確的電子線路,還要確保整個線路布局實現(xiàn)良好的平衡性。這就是說,電源線路應(yīng)實現(xiàn)極佳的分布,而且布局中每個線路節(jié)點的所有光學(xué)和雜散光靈敏反應(yīng)都應(yīng)得到很好的控制。并需要采用低功耗模塊設(shè)計,以確保滿足整體功耗要求。
              高速成像領(lǐng)域還有另一種趨勢,就是把高速ADC、時序發(fā)生器、LVDS發(fā)射器和校正算法的片上集成趨勢。這種圖像傳感器通常在速度和靈敏度方面不如上述圖像傳感器,但在易用性和系統(tǒng)集成功能方面頗有長處。目前市場上新興的第三種圖像傳感器就是通用高速圖像傳感器。具有模擬輸出或不具有時序發(fā)生器功能的老式(簡單式)通用圖像傳感器正在被速度更快、更復(fù)雜的圖像傳感器所取代。這種新型圖像傳感器使我們能在較短時間內(nèi)就設(shè)計出通用高速攝像頭。

              內(nèi)容來自百科網(wǎng)