- 海洋能
定義
海洋能指依附在海水中的可再生能源,[1]海洋通過各種物理過程接收、儲存和散發(fā)能量,這些能量以潮汐、波浪、溫度差、鹽度梯度、海流等形式存在于海洋之中。
簡介
海洋能(oceanenergy)是海水運動過程中產(chǎn)生的可再生能,主要包括溫差能、潮汐能、波浪能、潮流能、海流能、鹽差能等。潮汐能和潮流能源自月球、[1]太陽和其他星球引力,其他海洋能均源自太陽輻射。
海水溫差能是一種熱能。低緯度的海面水溫較高,[2]與深層水形成溫度差,可產(chǎn)生熱交換。其能量與溫差的大小和熱交換水量成正比。潮汐能、潮流能、海流能、波浪能都是機械能。潮汐的能量與潮差大小和潮量成正比。波浪的能量與波高的平方和波動水域面積成正比。在河口水域還存在海水鹽差能(又稱海水化學能),入海徑流的淡水與海洋鹽水間有鹽度差,若隔以半透膜,淡水向海水一側(cè)滲透,可產(chǎn)生滲透壓力,其能量與壓力差和滲透能量成正比。
地球表面積約為5.1×10^8km^2,其中陸地表面積為1.49×10^8km^2占29%;海洋面積達3.61×10^8km^2,以海平面計,全部陸地的平均海拔約為840m,而海洋的平均深度卻為380m,整個海水的容積多達1.37×10^9km^3。一望無際的大海,不僅為人類提供航運、水源和豐富的礦藏,而且還蘊藏著巨大的能量,它將太陽能以及派生的風能等以熱能、機械能等形式蓄在海水里,不像在陸地和空中那樣容易散失。
海洋能有三個顯著特點,1.蘊藏量大,并且可以再生不絕。2.能流的分布不均、密度低。3.能量多變、不穩(wěn)定。
特點
1.海洋能在海洋總水體中的蘊藏量巨大,而單位體積、單位面積、單位長度所擁有的能量較小。這就是說,要想得到大能量,就得從大量的海水中獲得。
2.海洋能具有可再生性。海洋能來源于太陽輻射能與天體間的萬有引力,只要太陽、月球等天體與地球共存,這種能源就會再生,就會取之不盡,用之不竭。
3.海洋能有較穩(wěn)定與不穩(wěn)定能源之分。較穩(wěn)定的為溫度差能、鹽度差能和海流能。不穩(wěn)定能源分為變化有規(guī)律與變化無規(guī)律兩種。屬于不穩(wěn)定但變化有規(guī)律的有潮汐能與潮流能。人們根據(jù)潮汐潮流變化規(guī)律,編制出各地逐日逐時的潮汐與潮流預報,預測未來各個時間的潮汐大小與潮流強弱。潮汐電站與潮流電站可根據(jù)預報表安排發(fā)電運行。既不穩(wěn)定又無規(guī)律的是波浪能。
4.海洋能屬于清潔能源,也就是海洋能一旦開發(fā)后,其本身對環(huán)境污染影響很小。
蘊藏量
各種海洋能的蘊藏量是非常巨大的,據(jù)估計有780多億千瓦,其中波浪能700億千瓦,潮汐能30億千瓦,溫度差能20億千瓦,海流能10億千瓦,鹽度差能10億千瓦。科學家曾作過計算,沿岸各國尚未被利用的潮汐能要比目前世界全部的水力發(fā)電量大一倍。如果將波浪的能量轉(zhuǎn)換為可利用的能源,那真是一種理想的巨大的能源。沿海各國,特別是美國、俄羅斯、日本、法國等國都非常重視海洋能的開發(fā)。從各國的情況看,潮汐發(fā)電技術(shù)比較成熟。利用波能、鹽度差能、溫度差能等海洋能進行發(fā)電還不成熟,目前仍處于研究試驗階段。
海洋能的優(yōu)缺點
海洋能缺點:獲取能量的最佳手段尚無共識,大型項目可能會破壞自然水流、潮汐和生態(tài)系統(tǒng)。
海洋能優(yōu)點:取之不竭的可再生資源,潮汐能源有規(guī)律可循,開發(fā)規(guī)模大小均可。
海洋能指蘊藏于海水中的各種可再生能源,包括潮汐能、波浪能、海流能、海水溫差能、海水鹽度差能等。這些能源都具有可再生性和不污染環(huán)境等優(yōu)點,是一項亟待開發(fā)利用的具有戰(zhàn)略意義的新能源。
波浪發(fā)電,據(jù)科學家推算,地球上波浪蘊藏的電能高達90萬億度。目前,海上導航浮標和燈塔已經(jīng)用上了波浪發(fā)電機發(fā)出的電來照明。大型波浪發(fā)電機組也已問世。我國在也對波浪發(fā)電進行研究和試驗,并制成了供航標燈使用的發(fā)電裝置。將來的世界,每一個海洋里都會有屬于我們中國的波能發(fā)電廠。波能將會為我國的電業(yè)作出很大貢獻。
潮汐發(fā)電,據(jù)世界動力會議估計,到2020年,全世界潮汐發(fā)電量將達到1000-3000億千瓦。世界上最大的潮汐發(fā)電站是法國北部英吉利海峽上的朗斯河口電站,發(fā)電能力24萬千瓦,已經(jīng)工作了30多年。中國在浙江省建造了江廈潮汐電站,總?cè)萘窟_到3000千瓦。
能量形式
潮汐能
因月球引力的變化引起潮汐現(xiàn)象,潮汐導致海水平面周期性地升降,因海水漲落及潮水流動所產(chǎn)生的能量成為潮汐能。
潮汐與潮流能來源于月球、太陽引力,其它海洋能均來源于太陽輻射,海洋面積占地球總面積的71%,太陽到達地球的能量,大部分落在海洋上空和海水中,部分轉(zhuǎn)化成各種形式的海洋能。
潮汐能的主要利用方式為發(fā)電,目前世界上最大的潮汐電站是法國的朗斯潮汐電站,我國的江夏潮汐實驗電站為國內(nèi)最大。
波浪能
波浪能是指海洋表面波浪所具有的動能和勢能,是一種在風的作用下產(chǎn)生的,并以位能和動能的形式由短周期波儲存的機械能。波浪的能量波高的平方、波浪的運動周期以及迎波面的寬度成正比。波浪能是海洋能源中能量最不穩(wěn)定的一種能源。
波浪發(fā)電是波浪能利用的主要方式,此外,波浪能還可以用于抽水、供熱、海水淡化以及制氫等。
海水溫差能
海水溫差能是指涵養(yǎng)表層海水和深層海水之間水溫差的熱能,是海洋能的一種重要形式。低緯度的海面水溫較高,與深層冷水存在溫度差,而儲存著溫差熱能,其能量與溫差的大小和水量成正比
溫差能的主要利用方式為發(fā)電,首次提出利用海水溫差發(fā)電設(shè)想的是法國物理學家阿松瓦爾,1926年,阿松瓦爾的學生克勞德試驗成功海水溫差發(fā)電。1930年,克勞德在古巴海濱建造了世界上第一座海水溫差發(fā)電站,獲得了10kW的功率。
溫差能利用的最大困難是溫差大小,能量密度低,其效率僅有3%左右,而且換熱面積大,建設(shè)費用高,目前各國仍在積極探索中。
鹽差能
鹽差能是指海水和淡水之間或兩種含鹽濃度不同的海水之間的化學電位差能,是以化學能形態(tài)出現(xiàn)的海洋能。主要存在與河海交接處。同時,淡水豐富地區(qū)的鹽湖和地下鹽礦也可以利用鹽差能。鹽差能是海洋能中能量密度最大的一種可再生能源。
據(jù)估計,世界各河口區(qū)的鹽差能達30TW,可能利用的有2.6TW。我國的鹽差能估計為1.1×10^8kw,主要集中在各大江河的出海處,同時,我國青海省等地還有不少內(nèi)陸鹽湖可以利用。鹽差能的研究以美國、以色列的研究為先,中國、瑞典和日本等也開展了一些研究。但總體上,對鹽差能這種新能源的研究還處于實驗室實驗水平,離示范應用還有較長的距離。
海流能
海流能是指海水流動的動能,主要是指海底水道和海峽中較為穩(wěn)定的流動以及由于潮汐導致的有規(guī)律的海水流動所產(chǎn)生的能量,是另一種以動能形態(tài)出現(xiàn)的海洋能。
海流能的利用方式主要是發(fā)電,其原理和風力發(fā)電相似。全世界海流能的理論估算值約為10^8kW量級。利用中國沿海130個水道、航門的各種觀測及分析資料,計算統(tǒng)計獲得中國沿海海流能的年平均功率理論值約為1.4X10^7kW。屬于世界上功率密度最大的地區(qū)之一,其中遼寧、山東、浙江、福建和臺灣沿海的海流能較為豐富,不少水道的能量密度為15~30kW/m^2,具有良好的開發(fā)值。特別是浙江的舟山群島的金塘、龜山和西候門水道,平均功率密度在20kW/m2以上,開發(fā)環(huán)境和條件很好。
近海風能
近海風能是風能地球表面大量空氣流動所產(chǎn)生的動能。在海洋上,風力比陸地上更加強勁,方向也更加單一,據(jù)專家估測,一臺同樣功率的海洋風電機在一年內(nèi)的產(chǎn)電量,能比陸地風電機提高70%。風能發(fā)電的原理:風力作用在葉輪上,將動能轉(zhuǎn)換成機械能,從而推動葉輪旋轉(zhuǎn),再通過增速機將旋轉(zhuǎn)的速度提升,來促使發(fā)電機發(fā)電。我國近海風能資源是陸上風能資源的3倍,可開發(fā)和利用的風能儲量有7.5億kW。長江到南澳島之間的東南沿海及其島嶼是我國最大風能資源區(qū)以及風能資源豐富區(qū)。資源豐富區(qū)有山東、遼東半島、黃海之濱,南澳島以西的南海沿海、海南島和南海諸島
發(fā)電方式
海洋熱能發(fā)電有兩種方式:
第一種是將低沸點工質(zhì)加熱成蒸汽
第二種是將溫水直接送入真空室使之沸騰變成蒸汽。蒸汽用來推動汽輪發(fā)電機發(fā)電,最后從600~1000米深處抽冷水使蒸汽冷凝。
第一種采取閉式循環(huán),第二種采取開式循環(huán)。
海水溫差發(fā)電,1930年在法國首次試驗成功,只是當時發(fā)出的電能不如耗去的電力多,因而未能付諸實施?,F(xiàn)在,許多國家都在進行海水溫差發(fā)電研究。
實踐證明,開式循環(huán)比閉式循環(huán)有更多的優(yōu)點:①以溫海水作工質(zhì),可避免氨或二氯二氟甲烷等有毒物質(zhì)對海洋的污染;②開式循環(huán)系直接接觸熱交換器,價廉且效率高;③直接接觸熱交換器可采用塑料制造,在溫海水中的抗腐蝕性高;④能產(chǎn)生副產(chǎn)品——蒸餾水。開式循環(huán)也有缺點:產(chǎn)生的蒸汽密度低,汽輪機體積大;變成蒸汽的海水排回海洋后,會影響附近生物的生存環(huán)境。
海洋溫差發(fā)電
是以非共沸介質(zhì)(氟里昂-22與氟里昂-12的混合體)為媒質(zhì),輸出功率是以前的1.1~1.2倍。一座75千瓦試驗工廠的試運行證明,由于熱交換器采用平板裝置,所需抽水量很小,傳動功率的消耗很少,其他配件費用也低,再加上用計算機控制,凈電輸出功率可達額定功率的70%。一座3000千瓦級的電站,每千瓦小時的發(fā)電成本只有50日元以下,比柴油發(fā)電價格還低。人們預計,利用海洋溫差發(fā)電,如果能在一個世紀內(nèi)實現(xiàn),可成為新能源開發(fā)的新的出發(fā)點。
潮汐發(fā)電
洶涌澎湃的大海,在太陽和月亮的引潮力作用下,時而潮高百丈,時而悄然退去,留下一片沙灘。海洋這樣起伏運動,日以繼夜,年復一年,是那樣有規(guī)律,那樣有節(jié)奏,好像人在呼吸。海水的這種有規(guī)律的漲落現(xiàn)象就是潮汐。
潮汐發(fā)電就是利用潮汐能的一種重要方式。據(jù)初步估計,全世界潮汐能約有10億多千瓦,每年可發(fā)電2~3萬億千瓦時。我國的海岸線長度達18000千米,據(jù)1958年普查結(jié)果估計,至少有2800萬千瓦潮汐電力資源,年發(fā)電量最低不下700億千瓦時。
世界著名的大潮區(qū)是英吉利海峽,那里最高潮差為14.6米,大西洋沿岸的潮差也達4~7.4米。我國的杭州灣的“錢塘潮”的潮差達9米。
據(jù)估計,我國僅長江口北支就能建80萬千瓦潮汐電站,年發(fā)電量為23億千瓦時,接近新安江和富春江水電站的發(fā)電總量;錢塘江口可建500萬千瓦潮汐電站,年發(fā)電量約180多億千瓦時,約相當于10個新安江水電站的發(fā)電能力。
早在12世紀,人類就開始利用潮汐能。法國沿海布列塔尼省就建起了“潮磨”,利用潮汐能代替人力推磨。隨著科學技術(shù)的進步,人們開始筑壩攔水,建起潮汐電站。
法國在布列塔尼省建成了世界上第一座大型潮汐發(fā)電站,電站規(guī)模宏大,大壩全長750米,壩頂是公路。平均潮差8.5米,最大潮差13.5米。每年發(fā)電量為5.44億千瓦時。
中國解放后在沿海建過一些小型潮汐電站。例如,廣東省順德縣大良潮汐電站(144千瓦)、福建廈門的華美太古潮汐電站(220千瓦)、浙江溫嶺的沙山潮汐電站(40千瓦)及象山高塘潮汐電站(450千瓦)。
波力發(fā)電
“無風三尺浪”是奔騰不息的大海的真實寫照。海浪有驚人的力量,5米高的海浪,每平方米壓力就有10噸。大浪能把13噸重的巖石拋至20米高處,能翻轉(zhuǎn)1700噸重的巖石,甚至能把上萬噸的巨輪推上岸去。
海浪蘊藏的總能量是大得驚人的。據(jù)估計地球上海浪中蘊藏著的能量相當于90萬億千瓦時的電能。
現(xiàn)狀分析
利用現(xiàn)狀
上述不同形式的能量有的已被人類利用,有的已列入開發(fā)利用計劃,但人們對海洋能的開發(fā)利用程度至今仍十分低。盡管這些海洋能資源之間存在著各種差異,但是也有著一些相同的特征。每種海洋能資源都具有相當大的能量通量:潮汐能和鹽度梯度能大約為2TW;波浪能也在此量級上;而海洋熱能至少要比此大兩個數(shù)量級。但是這些能量分散在廣闊的地理區(qū)域,因此實際上它們的能流密度相當?shù)停疫@些資源中的大部分均蘊藏在遠離用電中心區(qū)的海域。因此只能有一小部分海洋能資源能夠得以開發(fā)利用。
面臨的問題
很多海洋能至今沒被利用的原因主要有兩方面:一,經(jīng)濟效益差,成本高。二,一些技術(shù)問題還沒有過關(guān)。盡管如此,不少國家一面組織研究解決這些問題,一面在制定宏偉的海洋能利用規(guī)劃。如法國計劃到本世紀末利用潮汐能發(fā)電350億千瓦時,英國準備修建一座100萬千瓦的波浪能發(fā)電站,美國要在東海岸建造500座海洋熱能發(fā)電站。從發(fā)展趨勢來看,海洋能必將成為沿海國家,特別是發(fā)達的沿海國家的重要能源之一。
前景展望
全球海洋能的可再生量很大。根據(jù)聯(lián)合國教科文組織1981年出版物的估計數(shù)字,五種海洋能理論上可再生的總量為766億千瓦。其中溫差能為400億千瓦,鹽差能為300億千瓦,潮汐和波浪能各為30億千瓦,海流能為6億千瓦。但如上所述是難以實現(xiàn)把上述全部能量取出,設(shè)想只能利用較強的海流、潮汐和波浪;利用大降雨量地域的鹽度差,而溫差利用則受熱機卡諾效率的限制。因此,估計技術(shù)上允許利用功率為64億千瓦,其中鹽差能30億千瓦,溫差能20億千瓦,波浪能10億千瓦,海流能3億千瓦,潮汐能1億千瓦(估計數(shù)字)。
海洋能的強度較常規(guī)能源為低。海水溫差小,海面與500~1000米深層水之間的較大溫差僅為20℃左右;潮汐、波浪水位差小,較大潮差僅7—10米,較大波高僅3米;潮流、海流速度小,較大流速僅4~7節(jié)。即使這樣,在可再生能源中,海洋能仍具有可觀的能流密度。以波浪能為例,每米海岸線平均波功率在最豐富的海域是50千瓦,一般的有5~6千瓦;后者相當于太陽能流密度1千瓦/米2)。又如潮流能,最高流速為3米/秒的舟山群島潮流,在一個潮流周期的平均潮流功率達4.5千瓦/米2。海洋能作為自然能源是隨時變化著的。但海洋是個龐大的蓄能庫,將太陽能以及派生的風能等以熱能、機械能等形式蓄在海水里,不象在陸地和空中那樣容易散失。海水溫差、鹽度差和海流都是較穩(wěn)定的,24小時不間斷,晝夜波動小,只稍有季節(jié)性的變化。潮汐、潮流則作恒定的周期性變化,對大潮、小潮、漲潮、落潮、潮位、潮速、方向都可以準確預測。海浪是海洋中最不穩(wěn)定的,有季節(jié)性、周期性,而且相鄰周期也是變化的。但海浪是風浪和涌浪的總和,而涌浪源自遼闊海域持續(xù)時日的風能,不象當?shù)靥柡惋L那樣容易驟起驟止和受局部氣象的影響。
海洋能的利用目前還很昂貴,以法國的朗斯潮汐電站為例,其單位千瓦裝機投資合1500美元(1980年價格),高出常規(guī)火電站。但在目前嚴重缺乏能源的沿海地區(qū)(包括島嶼),把海洋能作為一種補充能源加以利用還是可取的。
我國現(xiàn)狀
發(fā)展過程
我國海洋能開發(fā)已有近40年的歷史,迄今建成的潮汐電站8座,80年代以來浙江、福建等地對若干個大中型潮汐電站,進行了考察、勘測和規(guī)化設(shè)計、可行性研究等大量的前期準備工作??傊?,我國的海洋發(fā)電技術(shù)已有較好的基礎(chǔ)和豐富的經(jīng)驗,小型潮汐發(fā)電技術(shù)基本成熟,已具備開發(fā)中型潮汐電站的技術(shù)條件。但是現(xiàn)有潮汐電站整體規(guī)模和單位容量還很小,單位千瓦造價高于常規(guī)水電站,水工建筑物的施工還比較落后,水輪發(fā)電機組尚未定型標準化。這些均是我國潮汐能開發(fā)現(xiàn)存的問題。其中關(guān)鍵問題是中型潮汐電站水輪發(fā)電機組技術(shù)問題沒有完全解決,電站造價亟待降低。
我國波力發(fā)電技術(shù)研究始于70年代,80年代以來獲得較快發(fā)展,航標燈浮用微型潮汐發(fā)電裝置已趨商品化,現(xiàn)已生產(chǎn)數(shù)百臺,在沿海海域航標和大型燈船上推廣應用。與日本合作研制的后彎管型浮標發(fā)電裝置,已向國外出口,該技術(shù)屬國際領(lǐng)先水平。在珠江口大萬山島上研建的岸邊固定式波力電站,第一臺裝機容量3kW的裝置,1990年已試發(fā)電成功。“八五”科技攻關(guān)項目總裝機容量20kW的岸式波力試驗電站和8kW擺式波力試驗電站,均已試建成功??傊覈Πl(fā)電雖起步較晚,但發(fā)展很快。微型波力發(fā)電技術(shù)已經(jīng)成熟,小型岸式波力發(fā)電技術(shù)已進入世界先進行列。但我國波浪能開發(fā)的規(guī)模遠小于挪威和英國,小型波浪發(fā)電距實用化尚有一定的距離。
潮流發(fā)電研究國際上開始于70年代中期,主要有美國、日本和英國等進行潮流發(fā)電試驗研究,至今尚未見有關(guān)發(fā)電實體裝置的報導。我國潮流發(fā)電研究始于70年代末,首先在舟山海域進行了8kW潮流發(fā)電機組原理性試驗。80年代一直進行立軸自調(diào)直葉水輪機潮流發(fā)電裝置試驗研究,目前正在采用此原理進行70kW潮流試驗電站的研究工作。在舟山海域的站址已經(jīng)選定。我國已經(jīng)開始研建實體電站,在國際上居領(lǐng)先地位,但尚有一系列技術(shù)問題有待解決。
近20多年來,受化石燃料能源危機和環(huán)境變化壓力的驅(qū)動,作為主要可再生能源之一的海洋能事業(yè)取得了很大發(fā)展,在相關(guān)高技術(shù)后援的支持下,海洋能應用技術(shù)日趨成熟,為人類在下個世紀充分利用海洋能展示了美好的前景。我國有大陸海岸線長達18000多公里,有大小島嶼6960多個,海島總面積6700平方公里,有人居住的島嶼有430多個,總?cè)丝?50多萬人。沿海和海島既是外向型經(jīng)濟的基地,又是海洋運輸和開發(fā)海洋的前哨,并且在鞏固國防,維護祖國權(quán)益上占有重要地位。改革開放以來,隨著沿海經(jīng)濟的發(fā)展,海島開發(fā)迫在眉睫,能源短缺嚴重地制約著經(jīng)濟的發(fā)展和人民生活水平的提高。外商和華僑因海島能源缺乏,不愿投資;駐島部隊用電困難,不利于國防建設(shè);特別是西沙、南沙等遠離大陸的島嶼,依靠大陸供應能源,因供應線過長,諸多不便,非常艱苦。為了保證沿海與海島經(jīng)濟持久快速地發(fā)展及人民生活水平的不斷提高,尋求解決能源供應緊張的途徑已刻不容緩。
技術(shù)現(xiàn)狀
資料顯示,我國從20世紀80年代開始,在沿海各地區(qū)陸續(xù)興建了一批中小型潮汐發(fā)電站并投入運行發(fā)電。其中最大的潮汐電站是1980年5月建成的浙江省溫嶺市江廈潮汐試驗電站,它也是世界已建成的較大雙向潮汐電站之一??値烊?90萬立方米,發(fā)電有效庫容270萬立方米。這里的最大潮差8.39米,平均潮差5.08米;電站功率3200千瓦。據(jù)了解,江廈電站每晝夜可發(fā)電14~15小時,比單向潮汐電站增加發(fā)電量30%~40%。江廈電站每年可為溫嶺、黃巖電力網(wǎng)提供100億瓦/小時的電能。
除潮汐能外,重點開發(fā)波浪能和海水熱能。統(tǒng)計顯示,海浪每秒鐘在1平方千米海面上產(chǎn)生20萬千瓦的能量,全世界海洋中可開發(fā)利用的波浪約為27—30億千瓦,而我國近海域波浪的蘊藏量約為1.5億千瓦,可開發(fā)利用量約3000—3500萬千瓦,目前,一些發(fā)達國家已經(jīng)開始建造小型的波浪發(fā)電站。
而海水熱能是海面上的海水被太陽曬熱后,在真空泵中減壓,使海水變?yōu)檎羝?,然后推動蒸汽輪機而發(fā)電。同時,蒸汽又被引上來,冷卻后回收為淡水。這兩項技術(shù)我國正在研究和開發(fā)中。
現(xiàn)有電站——江廈潮汐電站
1980年5月4日,浙江省溫嶺的江廈潮汐電站第一臺機組并網(wǎng)發(fā)電,揭開了中國較大規(guī)模建設(shè)潮汐電站的序幕。該電站裝有6臺500千瓦水輪發(fā)電機組,總裝機容量為3000千瓦,攔潮壩全長670米,水庫有效庫容270萬立方米,是一座規(guī)模不小的現(xiàn)代潮汐電站。它不但為解決浙江的能源短缺作出應有的貢獻,而且在經(jīng)濟上亦有競爭能力。江廈潮汐電站的單位造價為每千瓦2500元,與小水電站的造價相當。浙江沙山的40千瓦小型潮汐電站,從1959年建成至今運行狀況良好,投資4萬元,收入已超過35萬元。海山潮汐電站裝機150千瓦,年發(fā)電量29萬千瓦時,收入2萬元,并養(yǎng)殖蚶子、魚蝦及制磚,年收入20萬元。
潮汐發(fā)電有三種形式:一種是單庫單向發(fā)電。它是在海灣(或河口)筑起堤壩、廠房和水閘,將海灣(或河口)與外海隔開,漲潮時開啟水閘,潮水充滿水庫,落潮時利用庫內(nèi)與庫外的水位差,形成強有力的水龍頭沖擊水輪發(fā)電機組發(fā)電。這種方式只能在落潮時發(fā)電,所以叫單庫單向發(fā)電。第二種是單庫雙向發(fā)電,它同樣只建一個水庫,采取巧妙的水工設(shè)計或采用雙向水輪發(fā)電機組,使電站在漲、落潮時都能發(fā)電。但這兩種發(fā)電方式在平潮時都不能發(fā)電。第三種是雙庫雙向發(fā)電。它是在有利條件的海灣建起兩個水庫,漲潮和落潮的過程中,兩庫水位始終保持一定的落差,水輪發(fā)電機安裝在兩水庫之間,可以連續(xù)不斷地發(fā)電。
潮汐發(fā)電有許多優(yōu)點。例如,潮水來去有規(guī)律,不受洪水或枯水的影響;以河口或海灣為天然水庫,不會淹沒大量土地;不污染環(huán)境;不消耗燃料等。但潮汐電站也有工程艱巨、造價高、海水對水下設(shè)備有腐蝕作用等缺點。但綜合經(jīng)濟比較結(jié)果,潮汐發(fā)電成本低于火電。
內(nèi)容來自百科網(wǎng)