簡介
利用數(shù)字技術對糾錯碼實現(xiàn)最佳或接近最佳譯碼的技術。軟判決譯碼的性能接近最佳的最大似然譯碼,而譯碼器卻比最大似然譯碼的簡單。如果所有碼字都是等可能發(fā)送,則最佳的譯碼方法是:收到序列r后,譯碼器對所有2k個碼字進行條件概率p(r│ci)(也稱似然函數(shù))計算,i=1,2,…,2k。若對某一個l似然函數(shù)P(r|cl)取最大值,則譯碼器認為碼字cl就是最可能發(fā)送的碼字。這種譯碼方案稱為最大似然譯碼,它的譯碼錯誤概率最小,但復雜性卻隨碼長n呈指數(shù)增長。
詳解
糾錯碼中常用的譯碼方法是只利用碼的代數(shù)結構的硬判決譯碼。由解調器供給譯碼器的是二進制序列,即解調器僅對接收序列進行0、1硬判決,這樣就損失了接收信號中所含的有關信道差錯統(tǒng)計特性的信息。如果對解調器輸出的抽樣電壓進行量化,并用這些量化值近似代替碼元似然函數(shù)送入譯碼器譯碼。因此供給譯碼器的值不止二個,而有Q個(通常為 2m個)。另一方面,在某些情況下也可由解調器輸出的未量化的模擬電壓序列或其變換序列作為似然函數(shù),送入譯碼器譯碼。 譯碼器利用解調器送入的 Q進制量化序列或模擬序列,并利用碼的代數(shù)結構譯碼的方法稱為軟判決譯碼,它是一種概率譯碼方法。在高斯白噪聲信道中,軟判決譯碼比硬判決要高 2分貝的編碼增益,而在以突發(fā)錯誤為主的信道,如短波、散射、有線等信道中則要高 8分貝,因而有較大的實用價值。
類別
分組碼的軟判決譯碼分為兩類:一是使符號(碼元)錯誤概率最小;一是使碼字(組)錯誤概率最小。使符號錯誤概率最小的軟判決譯碼方法有刪除譯碼、廣義最小距離譯碼、信息集譯碼、格圖譯碼和契斯譯碼算法等,其中以契斯算法應用最普遍。使碼字錯誤概率最小的軟判決譯碼方法有最大后驗概率 (APP)譯碼、HR算法和重量刪除 (WED)譯碼算法,其中以重量刪除算法應用較多。
卷積碼的軟判決譯碼算法中,除了最大后驗概率譯碼方法外,1961年實現(xiàn)了序貫譯碼的軟判決譯碼,但用得最廣泛的是1967年由A.J.維特比提出的維特比算法及其軟判決譯碼。在高斯白噪聲信道中,當誤碼率為10-5時,這種譯碼算法能獲得5分貝的編碼增益,故目前廣泛應用于衛(wèi)星、深空等信道的差錯控制設備,但這種譯碼算法僅適用于約束度較短的卷積碼。1978年R.M.F.古德曼提出的最小距離序貫譯碼的軟判決譯碼方法,能適用于約束度較長的卷積碼,從而可獲得較低的誤碼率,但譯碼器的復雜性比維特比譯碼算法為高。
內容來自百科網